

Aeon Metals Ltd

(formerly Aussie Q Resources Limited) ABN 91 121 964 725

Suite 11, Level 3, 88 Pitt Street, Sydney NSW 2000, Australia P.O. Box 8155, Gold Coast MC. Qld 9726, Australia P: 61 7 5574 3830 F: 61 7 5574 3568 E: aqr1@bigpond.com

ASX Code - AQR

16 September 2013.

Company Announcements Office Australian Securities Exchange Level 4, Exchange Centre 20 Bridge Street Sydney NSW 2000

7B Drilling Success Continues

Following the success of Stage 2 drilling at Aeon Metals Ltd ("Aeon") 7B Project ("7B"), Aeon is pleased to announce that first assay results from the ongoing Stage 3 drill program continue to build 7B.

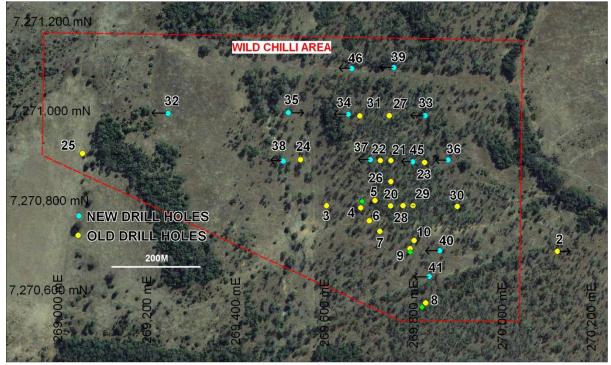
- Hole 34 intersects:
 - o 7m @ 1.25% CuEquiv¹ (0.87% Cu, 20g/t Ag, 0.17g/t Au) from 61m.
 - Zone includes:
 - 3m @ 2.43% CuEquiv¹ (1.76% Cu, 42g/t Ag, 0.16g/t Au) from
 61m
- Hole 36 intersects:
 - 16m @ 0.64% CuEquiv¹ (0.36% Cu, 3g/t Ag, 0.15g/t Au, 328ppm Co) from 65m.
 - Zone includes:
 - 5m @ 1.31% CuEquiv¹ (0.58% Cu, 5g/t Ag, 0.37g/t Au, 900ppm
 Co) from 65m
 - o 6m @ 0.51% CuEquiv¹ (0.43% Cu, 2g/t Ag, 0.04g/t Au) from 75m.
- Significant cobalt present in the large mineralised system as shown with the newly reported hole 36 below, which has significant cobalt grading up to 1220ppm.
- Diamond drilling component of Stage 3 campaign commenced on Friday 14 September.

Background

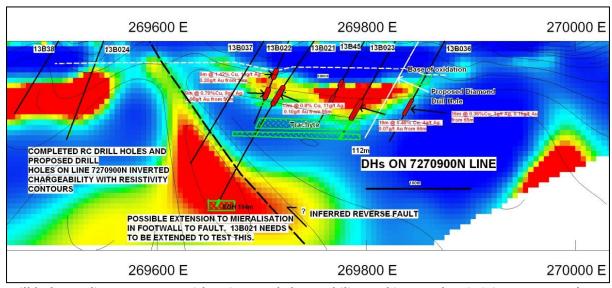
A Stage 3 drill campaign at the 7B Project commenced on 14 August. Since then 16 holes (Holes 32-47) have been drilled for 1636m. Total drilling at 7B since the first drill hole in February 2013 is now 3186m.

Some of the new drill holes, including holes 34 and 36 (reported here), were targeted at expanding the known mineralisation while others were designed to look for new opportunities. Although the final results are not yet available, there appears to be several areas that will require further follow-up drilling. This drilling has also enabled Aeon develop additional understanding of local structure and stratigraphy.

A diamond rig is on site to continue the Stage 3 campaign with the main aim of acquiring more structural and geological detail.


Initial Stage 3 Results

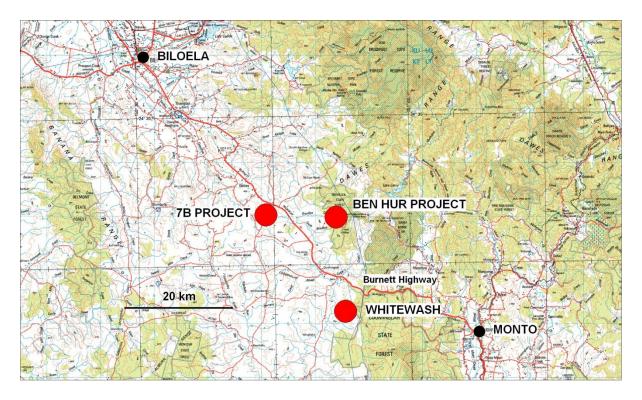
Initial assays received for the current Stage 3 program continue to deliver excellent results within the Wild Chilli Area (see map below) and illustrate further continuity of the shallow copper-gold-silver mineralisation.


Additionally, we are pleased note that cobalt is present in the large mineralised system as shown with the newly reported hole 36 below, which has significant cobalt grading up to 1220ppm.

Initial assay results received include:

Hole No.	Easting	Northing	Azimuth	Dips	Intersect	Cu	Au	Ag	Со	From	То	Cu Equiv ¹
			degrees	degrees	m	%	g/t	g/t	ppm	m	m	%
B034	269650	7271000	260	60	7	0.87	0.17	20	66	61	68	1.25
					incl 3	1.76	0.16	42	138	61	64	2.43
B036	269875	7270900	260	60	16	0.36	0.15	3	328	65	81	0.64
					incl 5	0.58	0.37	5	900	65	70	1.31
					incl 1	2.35	1.34	21	1220	66	67	3.97
					and 6	0.43	0.04	2	72	75	81	0.51

Locations of 'old' and 'new' drill holes at Wild Chilli



Drill holes on line 7270900N with IP inverted chargeability and inverted resistivity contours. (Data collected by Planetary Geophysics, processing by Rama Geophysics.)

All Projects

The Ben Hur project combined with the large Greater Whitewash Resource and 7B, all significant projects within a 15km radius of each other (see map below), has turned the Company's contiguous tenement package into a multiple project copper province with the ability to develop a centralised processing plant to service the combined project base.

This is assisted by the fact that the location of the projects are all close to major infrastructure (power, sealed highway, water) and only 150km by highway to Gladstone port. This strategy will be continued to be advanced.

A. C.M.

Hamish Collins

Managing Director

Aeon Metals Limited

The information in this report that relates to exploration results and mineral resources is based on information compiled Mr Martin I'Ons who is a Member of the Australian Institute of Geoscientists and who has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Martin I'Ons is a self-employed consultant who consults to Aeon and has consented to the inclusion in this report of the matters based on this information in the form and context which it appears.

Hole No.	Facting	Northing	A = i vec u the	Dips	luto voo et	C··	۸.,	۸۵	From	То	1
noie ivo.	casung	Northing		_	Intersect m		Au ~/*	Ag			Cu Equiv ¹
B004	269679	7270796	degrees 3	degrees 55	24	% 0.40	g/t 0.04	g/t 2.3	m 1	m 25	%
B004	203073	7270790	3	33	incl 4	0.70	0.07	3.0	4	8	
B005	269715	7270816	249	55	2	0.54	0.05	3.7	0	2	
5003	203713	7270010		33	and 3	0.52	0.03	8.3	47	50	0.68
					incl 2	0.70		10.8	48	50	0.88
					and 6	0.39		5.1	58	64	0.48
					incl 1	1.32		20.7	58	59	1.62
B006	269696	7270764	292	55	12	0.51	0.05	1.7	1	13	
					incl 6	0.73	0.08	2.0	2	8	
B009	269796	7270709	203	55	3	1.97	0.16	5.9	6	9	
					incl 1	4.92	0.38	13.4	7	8	
B011	270068	7270146	170	60	3	0.65	0.60	26.7	19	_22	1.48
					incl 1	1.86	0.91	68.3	20	21	3.16
BO12	270074	7270214	170	60	11	0.03	0.64	9.2	9	20	
					incl 3	0.03	2.03	34.4	19	22	1.97
					and 1	0.13	0.12	20.4	45	46	1.08
			4.4=		and 2	0.44	0.13	23.7	82	84	1.25
BO13	270130	7269701	145		12	0.03		4.5	8	20	0.40
					and 4	0.04		6.3	36	40	0.48
B015	270121	7269871	350	60	and 6 13	0.04	0.01	5.4 13	48 6	54 19	0.41
P012	2/0121	/2090/1	330	60	incl 3	0. 33 0.66	0.01	5	7	10	
B016	270100	7270203	259	60	9	0.06	1.00	41	14	23	1.91
D010	270100	7270203	233	00	incl 2	0.06	2.20	53	17	19	2.46
B020	269750	7270800	260	55	26	0.78	0.11	11	6	32	2.40
5020		7270000		33	incl 20	0.93	0.13	 14	8	28	
					incl 10	1.05	0.09	19	8	18	
B021	269747	7270897	260	55	13	0.80	0.10	11	55	68	1.00
					incl 5	1.53	0.10	20	61	66	1.88
B022	269726	7270904	260	70	9	1.42	0.20	14	30	39	1.67
					incl 3	3.68	0.40	36	32	<i>3</i> 5	4.34
					and 9	0.79	0.05	9	50	59	0.96
					incl 5	1.11	0.06	12	51	56	1.32
B023	269828	7270902	260	60	19	0.48	0.07	4	66	85	0.59
					incl 2	1.60	0.27	10	72	74	1.89
					incl 9	0.72	0.11	6	72	81	0.90
					and 2	1.09	0.14	12	79	81	1.36
B027	269750	7271000	260	60	11	0.15	0.31	2	60	71	
					incl 1	0.01	3.09	0	62	63	
PU20	260775	7270000	260	60	and 2 30	0.30	0.09	<u>4</u> 5	79 10	81 40	
B028	269775	7270800	200	90	and 15	0.35	0.08	5 6	10 24	40 39	0.66
					incl 3	0.83	0.16	14	36	39	1.40
B029	269800	7270800	255	58	10	0.87	0.06	3	12	22	1.70
3023		, _, 0000		33	incl 6	1.27	0.08	4	15	21	
					incl 3	2.10	0.12	6	18	21	
B031	269675	7271000	260	70	5	0.26	0.03	4	38	43	0.37
					and 5	0.30	0.05	4	54	59	0.38
	<u> </u>				and 1	0.53	0.04	9	67	68	0.65
B034	269650	7271000	260	60	7	0.87	0.17	20	61	68	1.25
					incl 3	1.76	0.16	42	61	64	2.43
B036	269875	7270900	260	60	16	0.36	0.15	3	65	81	0.64
					incl 5	0.58	0.37	5	65	70	1.31
					incl 1	2.35	1.34	21	66	67	3.97
					and 6	0.43	0.04	2	75	81	0.51

¹Copper Equivalent Calculation as per commodity prices Cu \$3.25/lb, Zn \$0.89/Lb, Ag A\$22/oz, Au A\$1,300/oz, Co A\$36,000/t.

Cu Equiv Formula = Copper grade + (Zn grade*(Zn price) + Ag grade*((Ag price/0.0625)/Cu price) + Au grade*((Au price)0.0625)/Cu price) + (Co grade*(Co price/Cu price)

Note:

Certain intercepts not reported in Cu Equiv as top component of hole in oxide zone. Material from this zone has not yet been tested for metallurgical recovery.

A composite sample from 13B022 52m to 57m that assayed 0.78% Cu, 7.1ppm Ag was submitted to ALS Ammtec Laboratories in Sydney in June 2013 for a demonstration flotation test to determine possible rates of recovery. This test indicated a recovery of 96% for Cu, 96% for Ag 70.5% for Zinc and 72.7% for Co.