

Aeon Metals Limited

(formerly Aussie Q Resources Limited) ABN 91 121 964 725

Level 7, 88 Pitt Street, Sydney, NSW 2000, Australia P.O. Box 8155, Gold Coast MC. Qld 9726, Australia P: 61 7 5574 3830 F: 61 7 5574 3568 W: aeonmetals.com.au E: info@aeonmetals.com.au

ASX Code - AQR

10 October 2014.

Company Announcements Office Australian Securities Exchange Level 4, Exchange Centre 20 Bridge Street Sydney NSW 2000

2014 Walford Creek Drilling Program; JORC Table 1 Information

In relation to the 2014 drilling program at Walford Creek (for which some results were announced on 28 August and 9 October with other results pending), enclosed is JORC Code Table 1 information together with drill hole data for the holes in this program.

Yours Faithfully

Stephen J Lonergan Company Secretary

Competent Person Statement

The information in this report that relates to Exploration Targets and Exploration Results for the Walford Creek Deposit is based on information compiled Mr Dan Johnson who is a Member of the Australian Institute of Geoscientists and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Dan Johnson is a full-time employee of Aeon Metals Limited and consents to the inclusion in the presentation of the Exploration Targets and Exploration Results in the form and context in which they appear.

JORC Code, 2012 Edition – Table 1 Walford Creek

Section 1 Sampling Techniques and Data (10 October 2014)

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 WMC: 1986-1994 completed diamond core and RC drilling on nominal 400 x 40m grid spacing. The holes were generally drilled vertically to appropriately target the stratabound Pb-Zn mineralisation. Sampling procedures were in line with industry standards of the day (as documented in historic reports); all RC drilling was sampled at 1m intervals and drill core was split/sawn into approximately 1m half-core samples. All samples were analysed in-house by Atomic Absorption Spectrometry. Copper Strike: 2004-2005 RC drilling was completed to infill the existing grid by WMC. RC drilling was used to obtain continuous 1m samples. Dry samples were split at the rig and wet samples speared. Approximately 2kg samples were weighed, dried, crushed and pulverised at a commercial laboratory for analysis by 4 acid digest with an ICP finish. Aston: 2010-2012 infill and extension diamond drilling with some RC precollars; good quality core was obtained from which 1m sawn half-core samples were collected and weighed, dried, crushed and pulverised at a commercial laboratory for analysis by 4 acid digest with an ICP finish. Drill core sample recoveries were recorded in the database. Aeon: 2014 Infill and extension diamond drilling with some RC precollars; good quality HQ core was obtained from which 1m sawn half-core samples were collected and weighed, dried, crushed and pulverised at a commercial laboratory for analysis by 4 acid digest with an ICP finish. All above grade (termed Ore Grade) were assayed as such via OG62 Four Acid Digest at extra cost. Drill core sample recoveries were recorded in the database
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 1986 to 1994 WMC: 45 Diamond holes 12,735m & 49 RC holes 3,678m; NQ & minor BQ Diamond drilling and RC, no mention of core orientation in any historic WMC report. 2004 to 2005 Copper Strike: 30 Reverse Circulation ("RC") holes 3,162m; RC drilling bit type/size not reported by CSE.

Criteria	JORC Code explanation	Commentary
		 2010 to 2012 Aston Metals: 92 Diamond holes 14,929m; HQ Triple Tube Diamond drilling with some RC pre-collars. Core oriented, where possible, by Reflex ACT tool and structural data recorded in the database. 2014 Aeon Metals Limited: 19 RC, RCDD and DD (Diamond) holes completed for 9021m. HQ Triple Tube Diamond drilling with some RC pre-collars. Core oriented, where possible, by Reflex ACT 111 tool and structural data recorded in the database.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 WMC: No known written record (however, any core loss intervals were recorded graphically in geological logs). Copper Strike: No written record. Copper strike have noted some areas of poor sample recovery through mineralised zones due to high water pressure, but noted that grades were comparable to WMC diamond drilling and therefore assumed any bias based on drilling technique and / or sample type was low. Aston and Aeon Metals: HQ Triple Tube drilling to improve recovery. Generally >90%; lower recoveries can in some cases be associated with higher mineral grades attributed to hydrothermal brecciation & dissolution in the Dolomite Unit rather than drilling or sampling practice. 2014 recoveries are considered to be better than 2012 recoveries. There was no obvious evidence of bias in the samples.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 WMC: Detailed hard-copy lithological logging of all holes transcribed by AML into an Access Database with a full set of logging codes acquired from BHP Billiton. Core photographs were taken but could not be recovered from the data archives. A few core photographs were made available to AML as scans. Copper Strike: Digital logging of all holes loaded into AML's Access database with a full set of logging codes acquired from Copper Strike. No chip tray photographs were made available. Aston and Aeon: Detailed digital geological and geotechnical logging of all holes with a full set of logging codes transcribed into an Access database; full set of core photographs. All logging has been converted to quantitative codes in the Access database.

Criteria	JORC Code explanation	Commentary
		All relevant intersections were logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 WMC: Split/sawn half core under geological control and no record for RC; 1m RC samples and half core samples of typically 1m, but as small as 0.25m sent for in-house lab assay. Copper Strike: Dry RC samples were riffle split and wet samples speared; 1m samples (of approximately 2kg) sent to commercial laboratory with appropriate sample prep process. Aston and Aeon: Company procedures for core handling documented in a flow sheet; sawn half core under geological control; 1m samples sent to commercial laboratory with appropriate sample prep. Company procedure for RC sample handling documented in flow-sheet; bulk 1m samples in most cases rotary split from rig with only some riffle split; sample dried, crushed and pulverised to appropriate levels; use of field duplicates and quarter core checks were completed and indicated comparable results with the original samples. All sampling methods and sample sizes are deemed appropriate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 WMC: In-house analysis by Atomic Absorption Spectrometry (digest recorded as PBKRS) as cited in annual reports of the day by WMC. The relevant QA/QC was not reported and the drill core is no longer available. Copper Strike: Appropriate analytical method using a 4 acid digest with ICP finish with ore grade analysis for Cu, Pb, Zn & Ag. Assaying was carried out by ALS, an accredited laboratory. CSE did not make use of any standards or run duplicate samples for QA/QC. Aston metals drilled 4 HQ Triple Tube diamond core twin holes with comparable results. Aston and Aeon: analytical procedure documented as a flow-sheet; Appropriate analytical method using a 4 acid digest with ICP finish. Ore grade analysis for Cu, Pb, Zn & Ag by OG62 method. Assaying was carried out by ALS, an accredited laboratory. Extensive QA/QC programme with standards, blanks, laboratory duplicates & secondary lab checks. Acceptable outcomes. All assay methods for both Aston and Aeon were appropriate at the time of undertaking.
Verification of	The verification of significant intersections by either independent or	WMC: Hardcopy sampling and assay data has been compared with recent

Criteria	JORC Code explanation	Commentary
sampling and assaying	 alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 drilling work by AML. AML considers the data reliability to be reasonable. Copper Strike: AML twinned 4 CSE holes to assess grade repeatability and continuity; results are comparable. All samples were submitted to an accredited laboratory, ALS. 1 hole was removed from the database because the geological logging and assay results appeared significantly at odds with several surrounding holes. Aston: Site visit to review core confirms mineral intercepts; Twinned holes (4) to test RC drilling by Copper Strike; results are comparable. AML have core handling procedures as flow-sheets. Aeon: 2014 drilling completed in late September 2014. Standards for Aeon are as set previously by Aston.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 WMC: Survey pickup of collar locations by EDM in 1992 and tied to the datum grid point at drillhole WFDD1. The precision of pickups was ±100mm with respect to the datum on average. Downhole survey method not recorded; database contains azimuth and dip readings every 30-50m. Copper Strike: Drill hole location and orientation data determined by CSE staff. Collars were buried and therefore validation by subsequent Comapnies was not possible. Downhole survey method were not recorded; database contains azimuth and dip readings based on collar and end of hole measurement. Aston: DGPS on all AML holes in MGA94 Zone 54 grid projection by MH Lodewyk Surveyors, Mount Isa. AML also had WMC drill hole collar locations validated by DGPS with good accuracy. Down hole surveys were taken every 30m by REFLEX, EZI-SHOT. A detailed Digital Elevation Model (DEM) was generated by David McInnes, consulting geophysicist, as part of the process of developing the 2010 3D geological model. The DEM was generated using a combination of data from the drillhole collars (DGPS), the WMC Gravity survey (with a 3cm accuracy), with variable data point spacing of 100x100m – 500x500m, and high resolution satellite data with an estimated 80m accuracy.
		 Aeon: DGPS on all Aeon drill holes in MGA94 Zone 54 grid projection by MH Lodewyk Surveyors, Mount Isa in September 2014. Down hole surveys were generally taken every 30m by REFLEX (ACT 111) EZI-SHOT or as

Criteria	JORC Code explanation	Commentary
		ground conditions permitted.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillhole section spacing is 50m in the eastern section of the deposit becoming 100m or greater in the west. On section spacing is approximately 40 to 80m. 100m spacing is appropriate for geological continuity, 50m spacing allows for reasonable assessment of grade continuity. No sample compositing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling generally achieved a high angle of intercept with the stratabound mineralisation. Any mineralisation related directly to structures with the same strike and dip of the Fish River Fault, has been intersected at a moderate angle. A broad alteration zone (with variable mineralisation) associated with both the stratabound mineral and the mineral proximal to the Fish River Fault has been intersected at reasonable angles. Drilling orientations are appropriate with no bias.
Sample security	The measures taken to ensure sample security.	 WMC: All assaying in-house. No documentation available on sample security. Copper Strike: All assaying completed by ALS Townsville. No documentation available on sample security. Aston and Aeon: RC chip samples in calico bags are sealed in polyweave bags. Drillcore is contained in lidded core trays, strapped down and transported by a dedicated truck to Mount Isa. The core is cut and sampled by comapny employees in the Mount Isa core yard and sent directly to ALS Mount Isa where assaying is completed. After analysis all samples are returned to Isa, stored in a lock up shed and digitally archived. Core is stored in Mount Isa in a lock up shed. Previously sections of massive sulphide were kept in secure cool storage. Aeon – recent core crush of 9mm has been kept in cryovac bags with a nitrogen flush prior to sealing. This is aimed at eliminating the requirement to use cold storage for the core. The remaining core is stacked on pallets and then glad wrapped prior to storage in a covered shed out of the weather. Visual inspection of drill core continues to show that assay grades match mineral assay distribution.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 WMC: Data transcribed from historic reports and subsequently validated by Aston with no material inconsistencies evident. Copper Strike: Supplied digital database checked by Aston against hard copy with no material discrepancies found. Aston: All data checked and validated prior to loading into the internal database by Aston geologists and external database managers. As part of the process of developing the geological model Aston reviewed all of the recent and historic data and consider it suitable for the purposes of resource estimation. A QA/QC audit by ALS found no major discrepancies in the assay data. Aeon – all data now being received has undergone the same validation as used previously by Aston. A substantial QA/QC review has been completed by H&S Consultants as part of the resource estimate undertaken previously.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Walford Creek is located wholly within EPM 14220. The EPM is located 65km west-northwest of Doomadgee township and 340km north-northwest of Mount Isa. Following a transfer of title (dated 12 March 2013) EPM 14220 is held 100% by Aeon Walford Creek Limited formerly Aston Metals (Qld) Limited and the previous Joint Venture Agreements no longer apply. The tenement currently consists of 41 sub-blocks. The tenement is a granted Exploration Permit for Minerals and no known impediments exist. As it currently stands, no Native Title claim is in existence over EPM 14220, howeverAeon continues to operate under the premises of the previous agreements negotiated with the Carpentaria Land Council Aboriginal Corporation representing the Waanyi and Gangalidda-Garawa peoples and signed prior to commencement of exploration.

Criteria	JORC Code explanation	Commentary			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Numerous companies have explored within the tenement area, largely concentrating on the discovery of a significant stratabound lead-zinc system. More recently, companies have been focused on targeting copper mineralisation in the hanging wall of the Fish River Fault. All exploration is considered to have been completed to a reasonable standard by experienced companies in a professional manner. Most exploration work has been appropriate but there are minor issues on historic documentation. Previous exploration of the Walford Creek Prospect is summarised below: 1984-1996 WMC Re-evaluation of the Walford Creek area resulting in a major exploration program targeting Pb-Zn mineralisation near the Fish River Fault: Systematic grid-based mapping, rock chip and soil sampling. Detailed Tempest EM and aeromagnetic survey; gravity survey, 600 line km of SIROTEM. 45 diamond and 49 percussion holes totalling approximately 16,500m of drilling on 400 and 800 m spaced drill hole fences. Isolated higher grade Pb-Zn-Cu-Ag intersections but no coherent economic Pb-Zn resource. Brief JV with MIMEX from 1995-1996. MIMEX completed CSAMT, EM and IP over 9 conceptual targets but no drilling. 2004-2006 Copper Strike Exploration program targeting copper mineralisation at the Walford Creek 			
		 2004-2006 Copper Strike Exploration program targeting copper mineralisation at the Walford Creek Prospect in and along the Fish River Fault: A small RC drilling program was commenced in 2004 but curtailed prematurely due to the 2004-2005 wet season. A significant RC drill program was completed during 2005. 30 holes were drilled for a total of 3,162m, of which 60.7m was diamond cored. Estimation of an Inferred Mineral Resource for the Walford Creek Project of 6.5 million tonnes at 0.6% Cu, 1.6% Pb, 2.1% Zn, 25 g/t Ag and 0.07% 			

Criteria	JORC Code explanation	Commenta	ry						
		Co.							
		2010 to 2012 Aston Metals (Qld) Limited							
		Exploration undertaken by Aston followed on from the targeting approach adopted by Copper Strike in drilling along the Fish River Fault to test both the SEDEX lens and the associated copper/cobalt mineralisation close to the fault.							
		 Aston Metals drilled a total of 92 Diamond holes 14,929m; HQ Triple Tube Diamond drilling with some RC pre-collars. 					riple Tube		
		Mineral	Category	MTonnes	Cu %	Pb %	Zn %	Ag g/t	Co ppm
		Combined	Indicated	14.7	0.46	0.83	1.04	20.1	920
			Inferred	33.6	0.36	0.83	0.81	20.5	648
			Total	48.3	0.39	0.83	0.88	20.4	731
			12 JORC Ir uiv.	ndicated an	d Inferre	ed Resou	rces of 4	48Mt at	1.42% Cu
Geology	Deposit type, geological setting and style of mineralisation.	hosted stratab dolomi Group, along t River F. The mi (chalco associa	or replace ound, diag tic and arg forming p he east-we ault. neralisation pyrite) t	Creek Proment Cu ± genetic Pb-gillaceous so part of the stone east-not typically to late three states the conic but the states of the states o	Co mine Zn-Ag ± sediment Lawn H ortheast occurs as epigenet acked m	ralisatior Cu min s of the ill Platfo trending s early di ic chale nassive	n, with meralisation Palaeoprm stration, steeply agenetic copyrite-pyrite	inor Pb-2 on, are roterozo graphic south-di sphaleri (galena-s enses a	Zn-Ag and hosted in ic Fickling sequence, pping Fish te-galenaphalerite) and talus,

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	 Mineralisation shows affinities to both early sediment-hosted SEDEX-type and late Mississippi Valley-type mineralisation styles. The wide diversity of mineralisation styles reflects multiple events in a long-lived re-activated structural setting that originated as a growth fault. Exploration results have not previously been reported in the public domain by Aston as the previous company was privately listed.
	 information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Information of the drillholes is included in the 2013 Resource Estimate Report. On 25 September 2014 vAeon released to the ASX historic drill hole results at Walford Creek Information pertaining to drill holes in the 2014 Aeon drilling program accompanies this Table 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Until Aeon's release of historic drill results on 25 September 2014, exploration results have not previously been reported in the public domain by Aston as the previous company was privately listed. Aeon has not undertaken any cutting of grades as it currently believes that all the grades received are an accurate reflection of the sampled interval. Aeon has maintained realistic intervals of dilution when stating mineralised intercepts however further refinement of what are considered realistic mining widths will be understood following further resource calculations. Aeon has not taken to stating significant intercepts as metal equivalents.
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Drill hole angle relative to mineralisation has been a compromise to accommodate the flat-lying stratabound massive sulphide bodies with associated replacement breccias and the steeper dipping epigenetic mineralisation proximal to the Fish River Fault. Generally the stratabound

Criteria	JORC Code explanation	Commentary
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	intercepts are close to true width whereas the epigenetic mineralisation intercepts are apparent widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps showing the nature and extent of the mineralisation are included in the 2013 Resource Estimation report by H&SC for all work prior to 2014. Appropriate sections have been included for the significant intercepts recorded from the 2014 drilling.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results reported on by Aeon are considered to be accurate and reflective of the mineralised system being drill tested.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Aeon believes that the results and data provided give a meaning and material reflection of the geological lithologies and structure being tested at Walford Creek. Further metallurgical test work is currently being undertaken and results from that work will be announced once known. It should also be noted that this meta.llurgical test work will be ongoing
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Aeon's future exploration will focus on upgrading and expanding upon the current Inferred and Indicated Resource Estimates at the Walford Creek Prospect, through further drilling within and immediately outside the resource area.

AEON METALS LIMITED

Drilling undertaken at Walford in 2014. Holes listed from west to east. Hole located using DGPS in MGA Zone 54 (GDA 94)

Hole ID	SITE_ID	YEAR	DGPS Pick Up Easting	DGPS Pick Up Northing	DGPS RL	DIP	MAG AZI	DRILL TYPE	ACTUAL TOTAL DEPTH
WFPD180	SITE004	2014	208196.5	8030416.8	107.8	-60.00	355	RCDD	521.60
WFPD179	SITE008	2014	209062.2	8030414.1	102.9	-60.00	355	RCDD	612.70
WFRC176	SITE018	2014	210278.4	8030372.2	104.1	-60.00	355	RC	155.00
WFRC174	SITE019	2014	210378.3	8030497.7	102.6	-60.00	355	RC	227.00
WFPD175	SITE025	2014	210479.3	8030460.7	101.5	-60.00	355	RCDD	607.70
WFPD178	SITE031	2014	210679.2	8030638.6	101.6	-61.00	355	RCDD	371.30
WFPD177	SITE035	2014	210780.3	8030641.0	101.2	-60.00	355	RCDD	371.30
WFPD181	SITE049	2014	211226.2	8030885.5	100.6	-60.00	355	RCDD	294.90
WFDD188	SITE057	2014	211480.4	8031055.1	100.0	-60.00	355	DD	291.20
WFPD182	SITE060	2014	211591.7	8031100.2	99.8	-60.00	355	RCDD	265.80
WFDD190	SITE XX2	2014	211673.0	8031158.7	100.1	-65.00	300	DD	266.9
WFDD187	SITE 73	2014	211993.9	8031353.6	99.8	-56.00	339	DD	239.4
WFDD192	SITE084	2014	212340.6	8031605.5	97.8	-60.00	335	DD	209.60
WFDD189	SITE089	2014	212582.7	8031770.4	101.2	-85.00	355	DD	88.50
WFPD183	SITE106	2014	212883.6	8031703.7	100.3	-60.00	355	RCDD	290.70
WFPD184	SITE115	2014	213037.3	8031691.2	100.4	-60.00	355	RCDD	311.30
WFPD185	SITE118	2014	213168.0	8031720.7	101.2	-60.00	355	RCDD	271.00
WFDD191	SITE XX1	2014	213276.2	8031720.4	101.9	-60	355	DD	321.5
WFPD186	SITE142	2014	214030.9	8031920.8	104.2	-70.00	355	RCDD	304.00